

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0784 of 2 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Mechanical fasteners for use in concrete

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG Werk Schramberg

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-15/0784 issued on 23 April 2018

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Page 2 of 19 | 2 June 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z34543.21 8.06.01-708/20

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Page 3 of 19 | 2 June 2021

Specific Part

1 Technical description of the product

The Screw anchor MULTI-MONTI-plus is an anchor in size 6, 7.5, 10, 12, 16 and 20 mm made of galvanised or stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2	
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2	
Displacements	See Annex C 6 and C 7	
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3 and C 4	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B 1

Z34543.21 8.06.01-708/20

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Page 4 of 19 | 2 June 2021

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin beglaubigt:

Tempel

Z34543.21 8.06.01-708/20

Installed condition

MMS-plus / carbon steel

MMS-plus / stainless steel

e.g. MMS-plus A4 SS stainless steel with hexagon head and washer

d₀ = nominal borehole diameter h_{nom} = nominal anchorage depth

 h_1 = borehole depth

h_{min} = minimum thickness of concrete member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

MULTI-MONTI-plus

Product description

Product in the installed state

Annex A 1

Table A1: Screw types

Туре			Marking
	A BE CO	1)	Hexagon Head with and without washer (alternative design with cone under the head) (S)
		2)	Hexagon Head and washer (SS)
	THE STATE OF THE S	3)	Hexagon Head and washer (alternative design with cone under the head) (SSK)
	2 O N	4)	PanHead, with small Pan Head (P)
	S.T.	5)	Mounting bar-anchor, with large Pan Head (MS)
	THE SELECTION OF THE SE	6)	Countersunk head (F)
	THE SELECTION OF THE SE	7)	Countersunk head with under head thread and single- or multi-start thread (FT)
		8)	Cylinder Head with under head thread and single- or multi-start thread (ZT, SST & PT)
		9)	Anchor with metric stud (ST)
	(8)	10)	Anchor with metric stud for mounting of nuts (pre-assembled with sleeve) (I)
	0	11)	Anchor with metric stud (V)
	٥	12)	Pan Head with under head thread and single- or multi-start thread, different diameters compared to the concrete thread (others expression possible) (DWC)
	()	13)	Countesunk Head with under head thread, different diameters compared to the concrete thread (TC)

Annex A 2

Table A2: Dimensions, materials and head markings

carbon steel 1)		Ø						
carbon	steel "		6	7,5	10	12	16	20
Thread diameter	ds	[mm]	6,65	7,75	10,5	12,6	16,7	21,2
Core diameter	d _k	[mm]	4,3	5,45	7,3	9,05	13,3	17,4
l a saula	L≥	[mm]	35	35	50	75	100	140
Length	L≤	[mm]	500	500	500	600	800	800
Rupture elongation	A5	[%]			≤	8		
				an analysis ()				

1) galvanized steel EN 10263-4:2001 (multi-layered coating systems are possible)

4-1-1-2-4-12		Ø			
stainless	stainless steel 2)		7,5	10	12
Thread diameter	ds	[mm]	7,65	10,5	12,6
Core diameter	dk	[mm]	5,45	7,3	9,25
1 11	L≥	[mm]	35	60	90
Length	L≤	[mm]	500	500	500
Rupture elongation	A ₅	[%]		≥ 8	

2) stainless steel 1.4401, 1.4462, 1.4578, 1.4529 und 1.4571 according EN 10088-1:2005

		lde	entification
	L	[Das-	
o o			
			PMM STL

	_
(FAM	1/20
((2	([E
1 2	/ لديا

Marking	Attribute
Н	Factory sign
MMS+	Anchor type
z.B. 7,5	Anchor size
z.B. 75	Anchor length
A4 + A5	adtional marking for stainless steel and CRC III
FA	adtional marking for stainless steel and CRC IV
KK	adtional marking for high corrosion resistance steel and CRC V
	Marking
MMS+	

	CRC V
Materials	Marking
carbon steel	MMS+
1.4401 / 1.4578	MMS+ A4
1.4462	MMS+ FA
1.4571	MMS+ A5
1.4529	MMS+ KK

MULTI-MONTI-plus	
Product description Dimensions and head marking	Annex A 3

Specifications of intended use

Table B1: Use of the anchoring:

Size MMS-plus			6	7,5	10	12	16	20
Embedment depth	h _{nom}	[mm]			а	lle		
Head shapes					а	lle		
Static and quasi static	loads					de.		
Fire exposure					C	k		
Size MMS-plus			10		- 1	2	16	20
Embedment depth	hno	[mm]	65		75	90	115	140
Head shapes	m		1 – 1	13	1 –	13	1 – 13	1 – 13
Cajamia antiona 1)2)		C1	ok		C	k	ol.	ol.
Seismic actions 1) 2)		C2	no	performar	ice assesse	d	ok	ok

Only Carbon Stahl (A4-/HCR-Steel not assessed)

Base Materials:

- Compacted reinforced or non-reinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016
- · Cracked and uncracked concrete

Conditions of use (Environmental conditions):

- · Structures subject to dry internal conditions
- For all other conditions according to EN 1993-1-4:2015, Table A.1 corresponding to corrosion resistance classes:
 - CRC III: screw with head marking MMS+ A4, MMS+ A5
 - CRC IV: screw with head marking MMS+ FA
 CRC V: screw with head marking MMS+ KK

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- The design of the anchoring under static or quasi-static actions and fire exposure have to be carried out in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055
- The design under shear load according to EN 1992-4:2018, section 6.2.2 applies to all in appendix B2, table B1 specified diameter of the diameter of clearance hole in the fixture

Installation:

- Hole drilling by hammer-drilling only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- After installation further turning of the anchor must not be possible
- The head of the anchor is attached to the fixture and is not damaged, respectively the required embedment depth is reached.

MULTI-MONTI-plus	
Intended Use Specification	Annex B 1

Z34542.21 8.06.01-708/20

With head shape 9 + 10 und use of metric thread only axial seismic actions are allowed

Table B2: Installation parameters MMS-plus carbon steel

Size MMS-plus				6	7	,5	1	0	1	2	1	6	20
Embedment depth	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Norminal drill diameter	d₀	[mm]		5	(3	,	8	1	0	1	4	18
Drill bit cutting-Ø	d _{cut} ≤	[mm]	5,	40	6,	40	8,	45	10	,45	14	,50	18,50
Borehole depth	h₁≥	[mm]	40	50	40	65	60	75	85	100	115	130	160
Diameter of clearance hole	d _f ≤	[mm]		7	9	9	12	2,5	14	,5	1	9	23
Diameter Countersunk	dh	[mm]	11	1,5	15	,5	19	9,5	2	4		-	-
Min. thickness of the concrete member	h _{min}	[mm]	10	00	10	00	100	115	125	150	15	50	180
cracked and min. spacing	Smin	[mm]	3	0	3	5	3	5	4	0	6	0	80
uncracked min. edge concrete distance	C _{min}	[mm]	3	0	3	0	3	5	4	0	6	0	80
Recommended installation	tool	[Nm]	Impa	ct scr	ew dri	ver, m	ax. po		utput nation	T _{max} a	ccordi	ng ma	anufacturer
			75	100	12	20	25	50	25	0	60	00	800
Torque moment for threaded version (MMS-plus V)	T _{inst}	[Nm]		-	1	5	2	0	3	0	55	70	140

MULTI-MONTI-plus	
Intended Use Installation parameters	Annex B 2

Table B3: Installation parameters MMS-plus stainless steel

Size MMS-plus A4					7,5		1	0	1	2	
Norminal drill diame	ter	d₀	[mm]		6			8	1	0	
Drill bit cutting-Ø		d _{cut} ≤	[mm]		6,40		8,	45	10	10,45	
Embedment depth hnom,standard		h _{nom}	[mm]	40	55	75	70	85	100	115	
Borehole depth with	cleaning	h₁≥	[mm]	45	60	85	80	95	110	125	
Borehole depth with cleaning ¹⁾	out	h₁≥	[mm]				h _{nom} +	2 x d₀	•		
Borehole depth with adjustment ¹⁾	Î	h _{1,adj} ≥	[mm]	-			h _{nom,ad}	_{j,0} + 10 r	mm		
Borehole depth with cleaning and with adjustment ¹⁾	out	h _{1,adj} ≥	[mm]	-			h _{nom,a}	_{dj,0} + 2 x	do		
Embedment depth		h _{nom}	[mm]	35	50	65	60	75	90	105	
Borehole depth with	cleaning	h₁≥	[mm]	40	55	75	70	85	100	115	
Borehole depth with cleaning ¹⁾		h₁≥	[mm]				h _{nom} + 2		,,,,,		
Borehole depth with adjustment ¹⁾		h _{1,adj} ≥	[mm]	-			h _{nom,ad}	_{i,0} + 10 r	nm		
Borehole depth with cleaning and with adjustment ¹⁾	out	h _{1,adj} ≥	[mm]	-			h _{nom,a}	_{ij,0} + 2 x	do		
Diameter of clearand	ce hole	d _f ≤	[mm]		9,0		12	2,5	14	,5	
Diameter Countersu	nk	dh	[mm]		13,6		1	7	2	1	
Min. thickness of the concrete member)	h _{min}	[mm]		100		115	125	15	50	
	min. spacing	S _{min}	[mm]		35		3	5	4	0	
1	min. edge distance	Cmin	[mm]		30		3	5	41	0	
Recommended insta	allation tool		[Nm]	lm					er output ormation	T _{max}	
				185	20	00	45	50	60	0	

 It should be ensured that the requirement for the minimum component thickness h_{min} ≥.h₁ + Δh mit Δh = max (2 x d₀; 30 mm) is fulfilled.

MULTI-MONTI-plus Intended Use Installation parameters Annex B 3

Adjustment MMS-plus stainless steel Borehole depth for adjustment h nom.adj.0 Adjustment 1. Step L adj h nom.adj.1 f fix.1 Controlling of edjustment and resulting

Controlling of adjustment and mounting

A screw can be adjusted maximum two times. The screw may be loosened up to a maximum L_{adj} = 10 mm from the surface of the attachment. The borehole depth for adjustment should be $h_{1,adj}$ (see table B3 Annex B3). The total allowed thickness of the shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom1} and h_{nom2} , or h_{nom2} and h_{nom3} for 7,5.

MULTI-MONTI-plus	
Intended Use Installation parameters	Annex B 4

Installation instructions

Note the information of the approval!

Create borehole using a Rotary Hammer.

Clean borehole, e.g. with blowing out.

Install of the screw anchor with an impact wrench or by hand.

Check: The anchor head is fully supported on the fixture an not damaged.

MULTI-MONTI-plus

Intended Use Installation instruction Annex B 5

Table C1: Characteristic values for static and quasi-static loading MMS-plus carbon steel

Size MMS-plus					6	7	7,5	1	0	1	2		16	20
Embedmend de	pth	h _{nom}	[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Steel failure fo	r tension- and	shear l	oad				la-4 Is							
Characteristic re	esistance	N _{Rk,s}	[kN]	10),8	1	7,6	32	2,1	49	9,9	11	1,1	190,2
Partial safety fa	ctor	γMs,N	[-]						1,	50				
Characteristic re	esistance	V ⁰ Rk,s	[kN]	4	,1	6	5,1	13	3,7	24	1,1	5	0,2	85,3
Partial safety fa	ctor	γMs,V	[-]						1,	25				
Ductility factor		k ₇	[-]						0	,8				
Characteristic re	esistance	M ⁰ Rk,s	[Nm]	6	,7	14	4,1	34	1,5	66	5,8	20	7,6	464,3
Pullout														
Characteristic re uncracked conc		N _{Rk,p}	[kN]	5,5	8	4				2	≥ N ^o Rk	,c		
Characteristic re cracked concret		N _{Rk,p}	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Increasing facto	r for C30/37								1,:	22				
concrete	C40/50	Ψο	[-]						1,4	41				
	C50/60	1								58			35/19	
Concrete cone	failure and sp	litting f	ailure											
Effective anchor	age depth	h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Tastas fas	cracked	K _{cr,N}	[-]						7,	7		•	-	
Factor for	uncracked	k _{ucr,N}	[-]						11	,0				
Concrete cone	edge distance	C _{cr,N}	[mm]					11 - 11 - 11 11 12	1.5	h _{ef}				
	spacing	Scr,N	[mm]						3 l	n ef				
	Characteristic resistance	N ⁰ Rk,sp	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Splitting	edge distance	Ccr,sp	[mm]						1.5	hef				
	spacing	S _{cr,sp}	[mm]						3 ł	∩ _{ef}				
nstallation facto		γinst	[-]						1,	- 2000				
Concrete pryou	t failure			524					S PA					
r-Factor		kв	[-]				1,0						2,0	
Concrete edge	failure				1000									
Effective length	of the anchor	I _f = h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Effective diamete	er of the	d _{nom}	[mm]	5		(5	8	3	10	0	1	4	18

¹⁾ Only for non-structural applications

MULTI-MONTI-plus Performance Characteristic values for static and quasi static tensions load Annex C 1

Characteristic values for static and quasi-static loading MMS-plus stainless steel Table C2:

Size MMS-plus	loading MMS-plus stainless steel MS-plus 7,5 10						12			
	r tension- and she	ear load			.,0		a let			
Characteristic re		N _{Rk,s}	[kN]	The second secon	16			29	Τ.	45
Partial safety fa		γMs,N	[-]				1,4			-
Characteristic re		V ⁰ Rk,s	[kN]	2	11	14	18	28	23	27
Partial safety fa		γMs,V	[-]				1,4			
Ductility factor		k ₇	[-]				1,0			_
Characteristic re	esistance	M ⁰ Rk,s	[Nm]		13,3			2,1	6	1,1
Pullout					n n					
	epth h _{nom,standard}	h _{nom}	[mm]	40	55	75	70	85	100	115
Characteristic re										
uncracked cond		$N_{Rk,p}$	[kN]	5,5	4,5	13	12	20	20	32
Characteristic re	esistance in	N.	ri.Ni2	2.5	_	4	_	_	40	40
cracked concre	te C20/25	$N_{Rk,p}$	[kN]	3,5	2	4	6	9	12	16
Embedmend d	epth h _{nom,reduced}	h _{nom}	[mm]	35 ¹⁾	50	65	60	75	90	105
Characteristic re	esistance in	N-	[LNI]	4	4	10	10	17	16	26
uncracked cond	rete C20/25	$N_{Rk,p}$	[kN]	4	4	10	10	17	10	20
Characteristic re	esistance in	Ne	[LNI]	2.5	1,5	3	5	7	9,5	13
cracked concre	te C20/25	N _{Rk,p}	[kN]	2,5	1,5	3	5	1	9,5	13
ncreasing fact	or for N _{Rk,p}				in the			transf		
Increasing facto	or for C30/37						1,22	2		
concrete	C40/50	Ψ _c	[-]			111-47-300000	1,4	1		
	C50/60						1,58	В		
Concrete cone	failure and splitti	ng failure								
Effective anchor	age depth	hef,standard	[mm]	23	36	49	44	56	65	77
Effective anchor	age depth	h _{ef,reduced}	[mm]	19	32	40	35	48	56	69
Factor for	cracked	k _{cr,N}	[-]				7,7			
racioi ioi	uncracked	k _{urc,N}	[-]				11,0)		
Concrete cone	edge distance	Ccr,N	[mm]				1,5 h	lef		
Concrete cone	spacing	S _{cr,N}	[mm]				3 h∈	ef		
	Characteristic	N ⁰ Rk,sp	[kN]			NIO-		$N_{Rk,p}^{2)}$		
Splitting	resistance	IN RK,Sp	[KIA]			117	KK,SP —	INKK,p '		
Spirtting	edge distance	C _{cr,sp}	[mm]				1,5 h	lef		
	spacing	S _{cr,sp}	[mm]				3 h	ef		
nstallation facto	r	γinst	[-]		1,	2			1,0	
Concrete pryou	ıt failure									
k-factor for hef,sta	andard	k ₈	[-]			1,0			2	,0
k-factor for hef,sta	andard	k ₈	[-]			1	,0			2,0
Concrete edge	failure									
Effective length	of the anchor	lf	[mm]		If	= cor	respo	nding	h _{ef}	
Effective diamet	ter of the anchor	d _{nom}	[mm]		6			8	1	0

¹⁾ Only for non-structural applications, only under dry internal conditions 2) For N_{Rk,p} the value in cracked concrete is decisive

MULTI-MONTI-plus	
Performance Characteristic value for seismic actions C1 and C2	Annex C 2

Z34542.21 8.06.01-708/20

Table C3.1: Characteristic values for seismic actions C1 MMS-plus carbon steel

Size MMS-pl	us			10		12	16	20
Embedment of	depth	h _{nom}	[mm]	65	75	90	115	140
Steel failure	for tension- a		rload					
		N _{Rk,s,c1}	[kN]	24,1	3	7,4	100,0	142,7
Characteristic	c resistance	γMs,c1	[-]			1,5		
and partial sa	fety factor	V _{Rk,s,c1}	[kN]	9,6	10	6,9	45,2	91,0
		γMs,c1	[-]		•	1,25		
Factor for ann	nular gap	α_{gap}	[-]			0,5		
Pullout								
Characteristic in cracked co		N _{Rk,p,c1}	[kN]	6,8	9,0	12,0	21,0	33,0
Concrete co	ne failure							
Effective anch	norage depth	h _{ef}	[mm]	50	57	70	90	114
	edge distance	C _{cr,N}	[mm]			1.5 h _{ef}		
_	spacing	Scr,N	[mm]			3 h _{ef}		
Installation fa	ctor	γinst	[-]		** MOMBILE SHIP	1,0		
Concrete pry	out failure	20 2 6					Terminal Control	
k-Factork		k ₈	[-]	1,	,0		2,0	
Concrete edg	ge failure							
Effective leng	th of the	$I_f = h_{ef}$	[mm]	50	57	70	90	114
Effective diam	neter-Ø	d _{nom}	[mm]	8	1	0	14	18

MULTI-MONTI-plus	
Performance Characteristic value for seismic actions C1 and C2	Annex C 3

Table C3.2: Characteristic values for seismic actions C2 MMS-plus carbon steel 1)

Size MMS-	plus			16	20
Steel failur	re for tension- a	nd shear	load		
Embedmen	nt depth	h _{nom}	[mm]	115	140
Steel failur	e for tension- a	nd shear	load		
		NRk,s,c2	[kN]	100,0	142,7
Characteris	tic resistance	γMs,c2	[-]	1	,5
and partial	safety factor	V _{Rk,s,c2}	[kN]	27,6	57,2
		γMs,c2	[-]	1,	25
Factor for a	nnular gap	О́дар	[-]	0	,5
Pullout					
Characteristic resistance in cracked concrete		N _{Rk,p,c2}	[kN]	14,0	18,1
Concrete c	one failure				
Effective an	chorage depth	h _{ef}	[mm]	90	114
concrete cone	edge distance	C _{cr,N}	[mm]	1.5	h _{ef}
	spacing	Scr,N	[mm]	3 1	hef
Installation	safety factor	γinst	[-]	1,	,0
Concrete p	ryout failure	1.540			
k-Factor	tor k ₈ [-			2,	0
Concrete e	dge failure				
Effective ler anchor	ngth of the	$I_f = h_{ef}$	[mm]	90	114
Effective dia	ameter-Ø	d _{nom}	[mm]	14	18

 $^{^{1)}}$ displacements $\delta_{N,c2}$ and $\delta_{V,c2}$ are not assessed

MULTI-MONTI-plus Performance Characteristic value for seismic actions C1 and C2 Annex C 4

Z34542,21 8.06,01-708/20

Table C4: Characteristic values under fire exposure MMS-plus carbon steel

Size MMS-plus				6		7,5		10		12		16		20
Embedment depth		h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Characteristic	resistance for	tension	and sh	ear /	F _{Rk,fi}	= NR	k,s,fi =	N _{Rk,p}	,fi = \	/ _{Rk,s,fi}				
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Characteristic	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
resistance	R30	M ⁰ Rk,s,fi	[Nm]	0	0,5		1,1		2,7		5,3		,4	36,6
	R60	M ⁰ Rk,s,fi	[Nm]	0,	3	0,6		1,5		2,8		8,9		19,8
	R90	M ⁰ Rk,s,fi	[Nm]	0,	2	0	,4	1,1		2,0		6,4		14,2
	R120	M ⁰ Rk,s,fi	[Nm]	0,	2	0,3		0,9		1,6		5,1		11,4
Edge distance														
	R30 bis R120	Ccr,fi	[mm]						2	Nef				
Spacing		n i n							JI.	ii ii			1	
	R30 bis R120	S _{cr,fi}	[mm]						2 0	cr,fi				

Table C5: Characteristic values under fire exposure MMS-plus stainless steel

Size MMS-plus				7,5			0	12		
Embedment de	pth h _{nom,standard}		[mm]	40	55	75	70	85	100	115
Embedment de		[mm]	35	50	65	60	75	90	105	
Characteristic	resistance fo	r tension	and sh	near						
$/F_{Rk,fi} = N_{Rk,s,fi}$	$= N_{Rk,p,fi} = V_R$	k,s,fi								
	R30	F _{Rk,fi}	[kN]	0,5	1.	1	1,4	2,3	3,0	3,9
	R60	F _{Rk,fi}	[kN]	0,5	0,8		1,4	1,4	2,1	2,1
	R90	F _{Rk,fi}	[kN]	0,5	0,5		1,0	1,0	1,5	1,5
	R120	F _{Rk,fi}	[kN]	0,4	0,	4	0,8	0,8	1,2	1,2
	R30				1,1		2,7		5,3	
	R60	M ⁰ Rk,s,fi	[Nm]			0,6		,5	2,8	
	R90	M ⁰ Rk,s,fi	[Nm]		0,4		1,1		2,0	
	R120	M ⁰ Rk,s,fi	[Nm]		0,3		0,9		1,	6
Edge distance										
	R30 - R120	C _{cr,fi}	[mm] 2 h _{ef}							
Spacing					N. J.					
	R30 - R120	Scr,fi	[mm]		2 Ccr,fi					

MULTI-MONTI-plus	
Performance Characteristic values under fire exposure	Annex C 5

Table C6: Displacements under tension loads MMS-plus carbon steel

Size MMS-plus				6	7	,5	1	0	1	2	1	6	20
Embedment depth	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Tension load uncracked concrete	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3
Displacement	δηο	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1
Displacement	δ _{N∞}	[mm]	0,3	0,3	0,4	1,1	0,8	0,7	0,7	0,6	0,1	0,1	0,1
Tension load cracked concrete	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	9,5	14,2	20,9
D: 1	δνο	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Displacement	δ _{N∞}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	1,4	1,4	0,7

Table C7: Displacements under tension loads MMS-plus stainless steel

Size MMS-plus				7,5		1	0	12		
Embedment depth hnom,	standard	[mm]	40	55	75	70	85	100	115	
Embedment depth hnom,reduced		[mm]	35	50	65	60	75	90	105	
Tension load uncracked concrete	N	[kN]	2,4	2,1	6,2	5,7	9,5	9,5	14,3	
Diantagement	δνο	[mm]	1,4	1,3	2,5	2,3	2,7	10,3	3,7	
Displacement	δ _{N∞}	[mm]	2,1	1,9	3,8	3,5	4,0	15,9	5,5	
Tension load cracked concrete	N	[kN]	1,4	0,7	1,9	2,9	4,3	5,7	7,6	
Diantasament	δνο	[mm]	1,3	0,2	0,3	0,6	0,5	1,3	1,4	
Displacement	δ _{N∞}	[mm]	1,9	0,3	0,5	0,9	0,8	1,9	2,2	

MULTI-MONTI-plus	
Performance Displacements under tension loads	Annex C 6

Z34542.21 8.06.01-708/20

Table C8: Displacements under shear loads MMS-plus carbon steel

Size MMS-plus			6		7,5		10		12		16		20
Embedment depth	h _{no}	[mm]	35	45	35	55	50	65	75	90	10 0	11 5	140
Shear load uncracked concrete	V	[kN]	2,0		4,0		8,0		12,0		22,6		42,8
Displacement	δ_{V0}	[mm]	0,1	0,1	0,1	0,1	0,2	0,1	0,	2	2	9	3,4
Displacement	δ∨∞	[mm]	0,2	0,2	0,1	0,2	0,2	0,2	0,	3	4,	4	5,1

Table C9: Displacements under shear loads MMS-plus stainless steel

Size MMS-plus		7,5		1	10	12			
Embedment depth hnom,standard		[mm]	40	55	75	70	85	100	115
Embedment depth hnom,reduced		[mm]	35	50	65	60	75	90	105
Shear load uncracked concrete	V	[kN]	3,9	4,8	6,2	8,1	12,9	10,5	12,4
Displacement	δνο	[mm]	2,7	3,5	3,1	2,7	3,3	3,2	3,3
Displacement	δ∨∞	[mm]	4,0	5,3	4,6	4,1	4,9	4,8	5,0

MULTI-MONTI-plus	
Performance Displacements under shear loads	Annex C 7